Al diseñar instrumentos de precisión, los ingenieros a menudo se enfrentan al desafío de convertir las señales de voltaje analógicas de los sensores en datos digitales para su procesamiento y análisis.La pregunta central se convierte en: ¿Cómo podemos asegurar la precisión de la conversión y determinar con precisión la salida digital correspondiente a voltajes analógicos específicos?Este artículo examina un convertidor analógico a digital de 8 bits (ADC) para demostrar el proceso de conversión y proporcionar métodos de cálculo detallados para aplicaciones del mundo real.
Un ADC es un componente electrónico que transforma señales analógicas continuas en representaciones digitales discretas.
Resolución:Determina el cambio de voltaje más pequeño detectable, expresado en bits.
Rango de tensión de entrada:Especifica los voltajes analógicos mínimos y máximos que el ADC puede procesar.
Considere un ADC de 8 bits con un rango de entrada de -5V a +5V. Este convertidor puede asignar voltajes dentro de este rango a valores binarios de 8 bits. Calculemos la salida digital para un voltaje de entrada de 1.95V.
1. Determinar los niveles totales de producción:
Un ADC de 8 bits proporciona 28= 256 niveles de salida discretos, dividiendo el rango de entrada en 256 pasos.
2Calcular la resolución del voltaje:
La variación mínima de voltaje detectable se calculará de la siguiente manera:
Resolución = (Vel máximo- ¿ Qué?Min) / Niveles de producción
Por ejemplo:
Resolución = (5V - (-5V)) / 256 = 10V / 256 ≈ 0,0390625V por paso
3Computa el código digital:
La salida digital (N) para una tensión de entrada dada se calcula como:
N = redondoEn el- ¿ Qué?Min) / (Vel máximo- ¿ Qué?Min) × (2No- 1))
Para la entrada de 1,95 V:
N = redondo (-1,95 V - (-5 V)) / 10 V × 255)
N = redondo (6,95 V / 10 V × 255) = redondo (177,225) = 177 (decimal)
4Conversión binaria (opcional):
El valor decimal 177 se convierte en la representación binaria de 8 bits 10110001.
Error de cuantización:Inherente a la naturaleza discreta de la conversión digital, reducida por una resolución más alta.
No linealidad:Desviaciones de las relaciones ideales de entrada y salida lineales.
Desviación de temperatura:Variaciones de rendimiento debidas a cambios térmicos.
Ruido:Interferencia de la señal que requiere un filtro adecuado.
Comprender estos principios permite a los ingenieros diseñar sistemas de adquisición de datos más precisos y confiables, asegurando mediciones precisas en aplicaciones técnicas.
Persona de Contacto: Ms. Sunny
Teléfono: 86-13826574847